Different approaches to more rapid innovation adoption cycles | Attribute | Brief Description-
(shortened here for ease
of reference) | Past
Examples | Example that can
benefit from this
rapid innovation
cycle adoption | |---|--|--|---| | Small enough
unit size to be
massed
produced | Small units are prototyped and tested quickly before factories are built | PV
Li-ion
batteries | Heat Pumps
Fuel Cells | | Modularity | Modularity confers many of the same benefits as small unit size but can also apply to larger units that cannot be massed produced but can be standardised and added sequentially to a facility. Stepwise additional | PV
Aluminium
smelting | Electrolytic hydrogen routes for chemical production Small modular nuclear reactors Standardised building retrofits | | Offers services valued by consumers | Technologies need to be first taken up in niche markets where a small number of consumers are willing to pay a premium for specific benefits, such as low carbon for learning, building network effects and future application | Passenger
cars
Smart
thermostats
LED's
Micro-
mobility | Autonomous, connected, electric and shared vehicles Connected appliances Building-integrated PV Decentralised energy trading | | Spillovers
(strong
synergies with
technology
advances
elsewhere) | Shared between researches and engineers form different sectors, reducing the need for dedicated energy R&D as they become simultaneously beneficial | Combined-cycle gas turbines (from jet turbines) PV (from semiconduct ors) Li-ion for EV's (from Li-ion for consumer products Offshore wind and geothermal (from oil and gas) | CCUS (from oil and gas exploration, chemical catalysis and gas separation) Batteries, fuel cells and electrolysers (from each other and other electrochemical technologies) Biofuels (from agriculture Smart connected energy | | Can be used
as a drop-in
replacement
or bolt-on
device | A new technology can be adopted more quickly if it requires no changes to associated equipment or infrastructure as it is fully compatible with the dominant existing means of the energy service provision | Certain biofuels, e.g. Hydrotreate d vegetable oil Biomethane Catalytic converter Desulphurisa tion | Hydrogen-based synthetic fuels Electric vehicles using existing road and electricity infrastructure Bio jet fuels | ## Different approaches to more rapid innovation adoption cycles | Replaces
hardware or
labour with
digital
solutions | Many recent energy sector innovations have replaced manual or analogue equipment or infrastructure with digital ones, adding more commercial value. | Seismic
geological
exploration
Power Grid
management | Autonomous, connected, electric and shared vehicles Passive demand response Digital twin O & M 3D printing | |--|--|--|--| | Minimal dependence on improvements in other technologies in the energy value chain | For instance, the success of CO2 capture depends on simultaneous developments in R&D as each coupled element in the value chain can slow the pace of innovation | Biomass
power
generation
Nuclear
LED's
Coal
gasification | Renewables plus
storage options
Enhanced
smelting
reduction-based
steel | | Minimal need
for adaptation
to local
conditions | Some technologies, such as batteries, may need to be adapted to local climatic conditions when they are deployed in a new region of temperature extremes, swings or weather conditions or variance in fuel supply electricity supply or water quality. | Internal
combustion
engines
Turbines | Novel battery
chemistries
Electrolysers
Fuel Cells | This rapid innovation cycle approach is the work of IEA- all rights reserved. The examples illustrated are ones chosen by IEA to help relate the attribute to the example of technology, innovation, or process change